Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
BMC Public Health ; 23(1): 1084, 2023 06 06.
Article in English | MEDLINE | ID: covidwho-20243611

ABSTRACT

By 31 May 2022, original/Alpha, Delta and Omicron strains induced 101 outbreaks of COVID-19 in mainland China. Most outbreaks were cleared by combining non-pharmaceutical interventions (NPIs) with vaccines, but continuous virus variations challenged the dynamic zero-case policy (DZCP), posing questions of what are the prerequisites and threshold levels for success? And what are the independent effects of vaccination in each outbreak? Using a modified classic infectious disease dynamic model and an iterative relationship for new infections per day, the effectiveness of vaccines and NPIs was deduced, from which the independent effectiveness of vaccines was derived. There was a negative correlation between vaccination coverage rates and virus transmission. For the Delta strain, a 61.8% increase in the vaccination rate (VR) reduced the control reproduction number (CRN) by about 27%. For the Omicron strain, a 20.43% increase in VR, including booster shots, reduced the CRN by 42.16%. The implementation speed of NPIs against the original/Alpha strain was faster than the virus's transmission speed, and vaccines significantly accelerated the DZCP against the Delta strain. The CRN ([Formula: see text]) during the exponential growth phase and the peak time and intensity of NPIs were key factors affecting a comprehensive theoretical threshold condition for DZCP success, illustrated by contour diagrams for the CRN under different conditions. The DZCP maintained the [Formula: see text] of 101 outbreaks below the safe threshold level, but the strength of NPIs was close to saturation especially for Omicron, and there was little room for improvement. Only by curbing the rise in the early stage and shortening the exponential growth period could clearing be achieved quickly. Strengthening China's vaccine immune barrier can improve China's ability to prevent and control epidemics and provide greater scope for the selection and adjustment of NPIs. Otherwise, there will be rapid rises in infection rates and an extremely high peak and huge pressure on the healthcare system, and a potential increase in excess mortality.


Subject(s)
COVID-19 , Epidemics , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Disease Outbreaks/prevention & control , China/epidemiology , Policy
2.
Math Biosci Eng ; 18(5): 5409-5426, 2021 06 18.
Article in English | MEDLINE | ID: covidwho-1282673

ABSTRACT

After a major outbreak of the coronavirus disease (COVID-19) starting in late December 2019, there were no new cases reported in mainland China for the first time on March 18, 2020, and no new cases reported in Hong Kong Special Administrative Region on April 20, 2020. However, these places had reported new cases and experienced a second wave since June 11, 2020. Here we develop a stochastic discrete-time epidemic model to evaluate the risk of COVID-19 resurgence by analyzing the data from the beginning of the outbreak to the second wave in these three places. In the model, we use an input parameter to represent a few potential risks that may cause a second wave, including asymptomatic infection, imported cases from other places, and virus from the environment such as frozen food packages. The effect of physical distancing restrictions imposed at different stages of the outbreak is also included in the model. Model simulations show that the magnitude of the input and the time between the initial entry and subsequent case confirmation significantly affect the probability of the second wave occurrence. Although the susceptible population size does not change the probability of resurgence, it can influence the severity of the outbreak when a second wave occurs. Therefore, to prevent the occurrence of a future wave, timely screening and detection are needed to identify infected cases in the early stage of infection. When infected cases appear, various measures such as contact tracing and quarantine should be followed to reduce the size of susceptible population in order to mitigate the COVID-19 outbreak.


Subject(s)
COVID-19 , Data Analysis , Contact Tracing , Humans , Quarantine , SARS-CoV-2
3.
J Theor Biol ; 502: 110385, 2020 10 07.
Article in English | MEDLINE | ID: covidwho-613906

ABSTRACT

Media reports can modify people's knowledge of emerging infectious diseases, and thus changing the public attitudes and behaviors. However, how the media reports affect the development of COVID-19 epidemic is a key public health issue. Here the Pearson correlation and cross-correlation analyses are conducted to find the statistically significant correlations between the number of new hospital notifications for COVID-19 and the number of daily news items for twelve major websites in China from January 11th to February 6th 2020. To examine the implication for transmission dynamics of these correlations, we proposed a novel model, which embeds the function of individual behaviour change (media impact) into the intensity of infection. The nonlinear least squares estimation is used to identify the best-fit parameter values in the model from the observed data. To determine impact of key parameters with media impact and control measures for the later outcome of the outbreak, we also carried out the uncertainty and sensitivity analyses. These findings confirm the importance of the responses of individuals to the media reports, and the crucial role of experts and governments in promoting the public under self-quarantine. Therefore, for mitigating epidemic COVID-19, the media publicity should be focused on how to guide people's behavioral changes by experts, and the management departments and designated hospitals of the COVID-19 should take effective quarantined measures, which are critical for the control of the disease.


Subject(s)
Betacoronavirus , Communicable Diseases, Emerging/epidemiology , Coronavirus Infections/epidemiology , Disease Outbreaks , Mass Media , Models, Theoretical , Pneumonia, Viral/epidemiology , COVID-19 , China , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL